Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 160: 189-205, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844838

RESUMO

BACKGROUND: Mesenchyme homeobox-2 (MEOX2)-mediated regulation of glioma-associated oncogene-1 (GLI1) has been associated with poor overall survival, conferring chemoresistance in lung cancer. However, the role of MEOX2/GLI1 in resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)-based therapy remains unexplored in human lung cancer. METHODS: Functional assays using genetic silencing strategy by short hairpin RNAs, as well as cytotoxic (tetrazolium dye MTT) and clonogenic assays, were performed to evaluate MEOX2/GLI1-induced malignancy capacity in lung cancer cells. Further analysis performed includes western blot, qPCR and ChIP-qPCR assays to identify whether MEOX2/GLI1 promote EGFR/AKT/ERK activation, as well as EGFR overexpression through epigenetic mechanisms. Finally, preclinical tumour progression in vivo and progression-free disease interval analyses in patients treated with EGFR-TKI were included. RESULTS: Overexpressed MEOX2/GLI1 in both EGFR wild-type and EGFR/KRAS-mutated lung cancer cells were detected and involved in the activation/expression of EGFR/AKT/ERK biomarkers. In addition, MEOX2/GLI1 was shown to be involved in the increased proliferation of tumour cells and resistance capacity to cisplatin, EGFR-TKIs (erlotinib and AZD9291 'osimertinib'), AZD8542-SMO, and AZD6244-MEKK1/2. In addition, we identified that MEOX2/GLI1 promote lung tumour cells progression in vivo and are clinically associated with poorer progression-free disease intervals. Finally, both MEOX2 and GLI1 were detected to be epigenetically involved in EGFR expression by reducing both repressive markers polycomb-EZH2 and histone H3K27me3, but, particularly, increasing an activated histone profile H3K27Ac/H3K4me3 at EGFR-gene enhancer-promoter sequences that probably representing a novel EGFR-TKI-based therapy resistance mechanism. CONCLUSION: MEOX2/GLI1 promote resistance to cisplatin and EGFR-TKI-based therapy in lung cancer cells, modulating EGFR/AKT/ERK signalling pathway activation, as well as inducing an aberrant epigenetic modulation of the EGFR-gene expression in human lung cancer.


Assuntos
Antineoplásicos/uso terapêutico , Epigênese Genética/genética , Genes erbB-1/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteína GLI1 em Dedos de Zinco/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos
2.
Mol Oncol ; 15(4): 1110-1129, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33433063

RESUMO

The involvement of LncRNA SOX2-overlapping transcript (SOX2-OT), SOX2, and GLI-1 transcription factors in cancer has been well documented. Nonetheless, it is still unknown whether co-expressed SOX2-OT/SOX2 or SOX2-OT/SOX2/GLI-1 axes are epigenetically/transcriptionally involved in terms of resistance to oncology therapy and in poorer clinical outcomes for patients with lung cancer. We evaluated the role of SOX2-OT/SOX2 and SOX2-OT/SOX2/GLI-1 axes using RT-qPCR, western blot, immunofluorescence analyses, gene silencing, cellular cytotoxic, and ChIP-qPCR assays on human cell lines, solid lung malignant tumors, and normal lung tissue. We detected that the SOX2-OT/SOX2/GLI-1 axis promotes resistance to tyrosine kinase inhibitor (TKI)-erlotinib and cisplatin-based therapy. Evidence from this study show that SOX2-OT modulates the expression/activation of EGFR-pathway members AKT/ERK. Further, both SOX2-OT and GLI-1 genes are epigenetically regulated at their promoter sequences, in an LncRNA SOX2-OT-dependent manner, mainly through modifying the enrichment of the activation histone mark H3K4me3/H3K27Ac, versus the repressive histone mark H3K9me3/H3K27me3. In addition, we identified that inhibition of SOX2-OT and reduced expression of SOX2/GLI-1 sensitizes lung cancer cells to EGFR/TKI-erlotinib or cisplatin-based treatment. Finally, we show that high co-expression of SOX2-OT/SOX2 transcripts and SOX2/GLI-1 proteins appears to correlate with a poor clinical prognosis and lung malignant phenotype. Collectively, these results present evidence that LncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and post-translational mechanisms.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Proteína GLI1 em Dedos de Zinco/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Cloridrato de Erlotinib/farmacologia , Histonas , Humanos , Neoplasias Pulmonares/diagnóstico , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...